DALLAS JUZZIN

DS1258Y/AB 128k x 16 Nonvolatile SRAM

www.maxim-ic.com

FEATURES

- 10-Year Minimum Data Retention in the Absence of External Power
- Data is Automatically Protected During a Power Loss
- Separate Upper Byte and Lower Byte Chip-Select Inputs
- Unlimited Write Cycles
- Low-Power CMOS
- Read and Write Access Times as Fast as 70ns
- Lithium Energy Source is Electrically Disconnected to Retain Freshness Until Power is Applied for the First Time
- Full ±10% Operating Range (DS1258Y)
- Optional ±5% Operating Range (DS1258AB)
- Optional Industrial Temperature Range of -40°C to +85°C, Designated IND

PIN ASSIGNMENT

CEU	1	40	V_{CC}
CEL	2	39	WE
DQ15	3	38	A16
DQ14	4	37	A15
DQ13	5	36	A14
DQ12	6	35	A13
DQ11	7	34	A12
DQ10	8	33	A11
DQ9	9	32	A10
DQ8	10	31	A9
GND	11	30	GND
DQ7	12	29	A8
DQ6	13	28	A7
DQ5	14	27	A6
DQ4	15	26	A5
DQ3	16	25	A4
DQ2	17	24	A3
DQ1	18	23	A2
DQ0	19	22	A1
ŌĒ	20	21	A0

40-Pin Encapsulated Package 740mil Extended

PIN DESCRIPTION

A0 to A16	- Address Inputs
DQ0 to DQ15	- Data In/Data Out
CEU	- Chip Enable Upper Byte
CEL	- Chip Enable Lower Byte
WE	- Write Enable
OE	- Output Enable
V _{CC}	- Power (+5V)
GND	- Ground

DESCRIPTION

The DS1258 128k x 16 nonvolatile (NV) SRAMs are 2,097,152-bit fully static, NV SRAMs, organized as 131,072 words by 16 bits. Each NV SRAM has a self-contained lithium energy source and control circuitry that constantly monitors V_{CC} for an out-of-tolerance condition. When such a condition occurs, the lithium energy source is automatically switched on and write protection is unconditionally enabled to prevent data corruption. DIP-package DS1258 devices can be used in place of solutions that build NV 128k x 16 memory by utilizing a variety of discrete components. There is no limit on the number of write cycles that can be executed and no additional support circuitry is required for microprocessor interfacing.

READ MODE

The DS1258 devices execute a read cycle whenever \overline{WE} (Write Enable) is inactive (high) and either/both of \overline{CEU} or \overline{CEL} (Chip Enables) are active (low) and \overline{OE} (Output Enable) is active (low). The unique address specified by the 17 address inputs (A0-A16) defines which of the 131,072 words of data is accessed. The status of \overline{CEU} and \overline{CEL} determines whether all or part of the addressed word is accessed. If \overline{CEU} is active with \overline{CEL} inactive, then only the upper byte of the addressed word is accessed. If \overline{CEU} is inactive with \overline{CEL} active, then only the lower byte of the addressed word is accessed. If \overline{CEU} and \overline{CEL} inputs are active (low), then the entire 16-bit word is accessed. Valid data will be available to the 16 data output drivers within t_{ACC} (Access Time) after the last address input signal is stable, providing that \overline{CEU} , \overline{CEL} and \overline{OE} access times are also satisfied. If \overline{CEU} , \overline{CEL} , and \overline{OE} access times are not satisfied, then data access must be measured from the later occurring signal, and the limiting parameter is either t_{CO} for \overline{CEU} , \overline{CEL} , or t_{OE} for \overline{OE} rather than address access.

WRITE MODE

The DS1258 devices execute a write cycle whenever $\overline{\text{WE}}$ and either/both of $\overline{\text{CEU}}$ or $\overline{\text{CEL}}$ are active (low) after address inputs are stable. The unique address specified by the 17 address inputs (A0-A16) defines which of the 131,072 words of data is accessed. The status of $\overline{\text{CEU}}$ and $\overline{\text{CEL}}$ determines whether all or part of the addressed word is accessed. If $\overline{\text{CEU}}$ is active with $\overline{\text{CEL}}$ inactive, then only the upper byte of the addressed word is accessed. If $\overline{\text{CEU}}$ is inactive with $\overline{\text{CEL}}$ active, then only the lower byte of the addressed word is accessed. If $\overline{\text{CEU}}$ and $\overline{\text{CEL}}$ inputs are active (low), then the entire 16-bit word is accessed. If both the $\overline{\text{CEU}}$ and $\overline{\text{CEL}}$ inputs are active (low), then the entire 16-bit word is accessed. The write cycle is terminated by the earlier rising edge of $\overline{\text{CEU}}$ and/or $\overline{\text{CEL}}$, or $\overline{\text{WE}}$. All address inputs must be kept valid throughout the write cycle. WE must return to the high state for a minimum recovery time (t_{WR}) before another cycle can be initiated. The $\overline{\text{OE}}$ control signal should be kept inactive (high) during write cycles to avoid bus contention. However, if the output drivers are enabled ($\overline{\text{CEU}}$ and/or $\overline{\text{CEL}}$, and $\overline{\text{OE}}$ active) then $\overline{\text{WE}}$ will disable the outputs in topow from its falling edge.

ŌĒ	WE	CEL	CEU	V _{CC} CURRENT	DQ0-DQ7	DQ8-DQ15	CYCLE PERFORMED
Н	Н	Х	Х	I _{CCO}	High-Z	High-Z	Output Disabled
L	Н	L	L		Output	Output	
L	Н	L	Н	I _{CCO}	Output	High-Z	Read Cycle
L	Н	Н	L		High-Z	Output	
Х	L	L	L		Input	Input	
Х	L	L	Н	I _{CCO}	Input	High-Z	Write Cycle
Х	L	Н	L		High-Z	Input	
Х	Х	Н	Н	I _{CCS}	High-Z	High-Z	Output Disabled

READ/WRITE FUNCTION Table 1

DATA RETENTION MODE

The DS1258AB provides full functional capability for V_{CC} greater than 4.75V, and write protects by 4.5V. The DS1258Y provides full functional capability for V_{CC} greater than 4.5V and write protects by 4.25V. Data is maintained in the absence of V_{CC} without any additional support circuitry. The NV static RAMs constantly monitor V_{CC} . Should the supply voltage decay, the NV SRAMs automatically write protect themselves, all inputs become "don't care," and all outputs become high impedance. As V_{CC} falls below approximately 3.0V, a power switching circuit connects the lithium energy source to RAM to

retain data. During power-up, when V_{CC} rises above approximately 3.0V, the power switching circuit connects external V_{CC} to RAM and disconnects the lithium energy source. Normal RAM operation can resume after V_{CC} exceeds 4.75V for the DS1258AB and 4.5V for the DS1258Y.

FRESHNESS SEAL

The DS1258 devices are shipped from Dallas Semiconductor with the lithium energy sources disconnected, guaranteeing full energy capacity. When V_{CC} is first applied at a level greater than V_{TP} , the lithium energy source is enabled for battery backup operation.

ABSOLUTE MAXIMUM RATINGS*

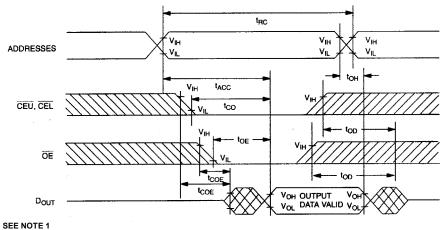
Voltage on Any Pin Relative to Ground Operating Temperature Range Storage Temperature Range Soldering Temperature Caution: Do Not Reflow -0.3V to +6.0V 0°C to +70°C, -40°C to +85°C for Industrial Parts -40°C to +70°C, -40°C to +85°C for Industrial Parts +260°C for 10 seconds (Wave or Hand Solder Only)

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

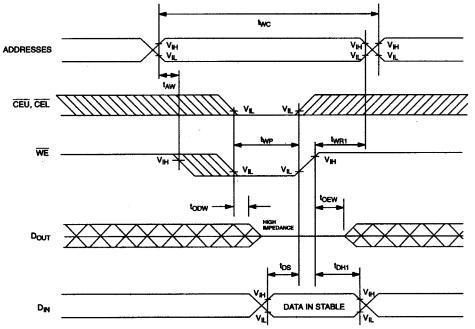
RECOMMENDED DC OPERATING CONDITIONS				(†	A: See N	lote 10)
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
DS1258AB Power Supply Voltage	V _{CC}	4.75	5.0	5.25	V	
DS1258Y Power Supply Voltage	V _{CC}	4.5	5.0	5.5	V	
Logic 1	V _{IH}	2.2		V _{CC}	V	
Logic 0	V _{IL}	0.0		+0.8	V	

DC ELECTRICAL CHARACTERISTICS	(t _A : See N		•	5V ± 5% 5V ± 10°		,
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Input Leakage Current	I _{IL}	-2.0		+2.0	μΑ	
I/O Leakage Current $\overline{CEU} = \overline{CEL} \ge V_{IH}$ $\le V_{CC}$	I _{IO}	-1.0		+1.0	μΑ	
Output Current @ 2.4V	I _{OH}	-1.0			mA	
Output Current @ 0.4V	I _{OL}	2.0			mA	
Standby Current \overline{CEU} , $\overline{CEL} = 2.2V$	I _{CCS1}		0.7	1.5	mA	
Standby Current \overline{CEU} , $\overline{CEL} = V_{CC} - 0.5V$	I _{CCS2}		150	300	μΑ	
Operating Current	I _{CCO1}			170	mA	
Write Protection Voltage (DS1258AB)	V _{TP}	4.50	4.62	4.75	V	
Write Protection Voltage (DS1258Y)	V _{TP}	4.25	4.37	4.5	V	

DS1258Y/AB

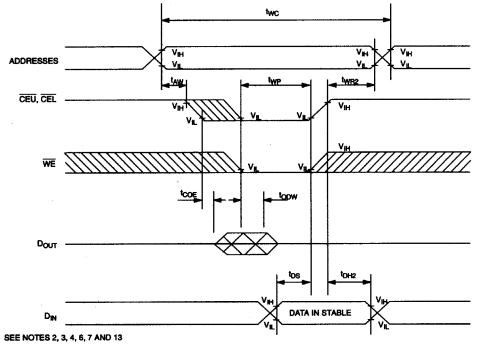

CAPACITANCE					(t _A =	= +25°C)
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Input Capacitance	C _{IN}		20	25	pF	
Input/Output Capacitance	C _{I/O}		5	10	pF	

AC ELECTRICAL CHARACTERISTICS

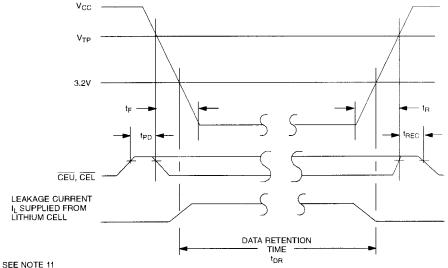

 $(V_{CC} = 5V \pm 5\% \text{ for DS1258AB})$ (t_A: See Note 10) (V_{CC} = 5V + 10% for DS1258Y)

		DS1258AB-70 DS1258Y-70					
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES
Read Cycle Time	t _{RC}	70		100		ns	
Access Time	t _{ACC}		70		100	ns	
$\overline{\text{OE}}$ to Output Valid	t _{OE}		35		50	ns	
$\overline{\text{CEU}}$ or $\overline{\text{CEL}}$ to Output Valid	t _{CO}		70		100	ns	
$\overline{\text{OE}}$ or $\overline{\text{CEU}}$ or $\overline{\text{CEL}}$ to Output Valid	t _{COE}	5		5		ns	5
Output High Z from Deselection	t _{OD}		25		35	ns	5
Output Hold from Address Change	t _{OH}	5		5		ns	
Write Cycle Time	t _{WC}	70		100		ns	
Write Pulse Width	t _{WP}	55		75		ns	3
Address Setup Time	t _{AW}	0		0		ns	
Write Recovery Time	t _{WR1} t _{WR2}	5 15		5 15		ns ns	12 13
Output High Z from \overline{WE}	t _{ODW}		25		35	ns	5
Output Active from \overline{WE}	t _{OEW}	5		5		ns	5
Data Setup Time	t _{DS}	30		40		ns	4
Data Hold Time	t _{DH1} t _{DH2}	0 10		0 10		ns ns	12 13

READ CYCLE



WRITE CYCLE 1



SEE NOTE 2, 3, 4, 6, 7, 8 AND 12

POWER-DOWN/POWER-UP CONDITION

POWER-DOWN/POWER-UP TIMING

(t_A: See Note 10)

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
$\overline{\text{CEU}}$, $\overline{\text{CEL}}$ at V_{IH} before Power-Down	t _{PD}	0			μs	11
V_{CC} slew from V_{TP} to $0V$	t _F	300			μs	
V_{CC} slew from 0V to V_{TP}	t _R	300			μs	
$\overline{\text{CEU}}$, $\overline{\text{CEL}}$ at V_{IH} after Power-Up	t _{REC}	2		125	ms	

 $(t_{A} = +25^{\circ}C)$

					(LA ·	-1200)
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Expected Data Retention Time	t _{DR}	10			years	9

WARNING:

Under no circumstance are negative undershoots, of any amplitude, allowed when device is in battery backup mode.

NOTES:

- 1) $\overline{\text{WE}}$ is high for a Read Cycle.
- 2) $\overline{OE} = V_{IH}$ or V_{IL} . If $\overline{OE} = V_{IH}$ during write cycle, the output buffers remain in a high impedance state.
- 3) t_{WP} is specified as the logical AND of \overline{CEU} or \overline{CEL} and \overline{WE} . t_{WP} is measured from the latter of \overline{CEU} , \overline{CEL} or \overline{WE} going low to the earlier of \overline{CEU} , \overline{CEL} or \overline{WE} going high.
- 4) t_{DS} is measured from the earlier of \overline{CEU} or \overline{CEL} or \overline{WE} going high.
- 5) These parameters are sampled with a 5pF load and are not 100% tested.
- 6) If the \overline{CEU} or \overline{CEL} low transition occurs simultaneously with or later than the \overline{WE} low transition in the output buffers remain in a high impedance state during this period.
- 7) If the \overline{CEU} or \overline{CEL} high transition occurs prior to or simultaneously with the \overline{WE} high transition, the output buffers remain in high impedance state during this period.

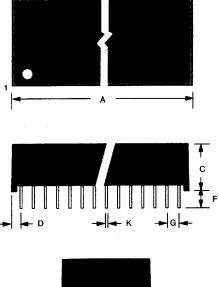
- 8) If \overline{WE} is low or the \overline{WE} low transition occurs prior to or simultaneously with the \overline{CEU} or \overline{CEL} low transition, the output buffers remain in a high impedance state during this period.
- 9) Each DS1258 has a built-in switch that disconnects the lithium source until the user first applies V_{CC}. The expected t_{DR} is defined as accumulative time in the absence of V_{CC} starting from the time power is first applied by the user. This parameter is assured by component selection, process control, and design. It is not measured directly during production testing.
- 10) All AC and DC electrical characteristics are valid over the full operating temperature range. For commercial products, this range is 0°C to +70°C. For industrial products, this range is -40°C to +85°C.
- 11) In a power-down condition the voltage on any pin may not exceed the voltage on V_{CC} .
- 12) t_{WR1} , t_{DH1} are measured from \overline{WE} going high.
- 13) t_{WR2} , t_{DH2} are measured from \overline{CEU} OR \overline{CEL} going high.
- 14) DS1258 DIP modules are recognized by Underwriters Laboratory (U.L.®) under file E99151.

DC TEST CONDITIONS

Outputs Open Cycle = 200ns All voltages are referenced to ground

AC TEST CONDITIONS

Output Load: 100 pF + 1TTL Gate Input Pulse Levels: 0.0V to 3.0V Timing Measurement Reference Levels Input: 1.5V Output: 1.5V Input pulse Rise and Fall Times: 5ns


Part Number	Temperature Range	Supply Tolerance	Pin/Package	Speed Grade
DS1258AB-70	0°C to +70°C	$5V \pm 5\%$	40 / 740 EMOD	70ns
DS1258AB-70#	0°C to +70°C	$5V \pm 5\%$	40 / 740 EMOD	70ns
DS1258AB-70IND	-40°C to +85°C	$5V \pm 5\%$	40 / 740 EMOD	70ns
DS1258AB-70IND#	-40°C to +85°C	$5V \pm 5\%$	40 / 740 EMOD	70ns
DS1258AB-100	0°C to +70°C	$5V \pm 5\%$	40 / 740 EMOD	100ns
DS1258AB-100#	0°C to +70°C	$5V \pm 5\%$	40 / 740 EMOD	100ns
DS1258Y-70	0°C to +70°C	$5V \pm 10\%$	40 / 740 EMOD	70ns
DS1258Y-70#	0°C to +70°C	$5V \pm 10\%$	40 / 740 EMOD	70ns
DS1258Y-70IND	-40°C to +85°C	$5V \pm 10\%$	40 / 740 EMOD	70ns
DS1258Y-70IND#	-40°C to +85°C	$5V \pm 10\%$	40 / 740 EMOD	70ns
DS1258Y-100	0°C to +70°C	$5V \pm 10\%$	40 / 740 EMOD	100ns
DS1258Y-100#	0° C to $+70^{\circ}$ C	$5V \pm 10\%$	40 / 740 EMOD	100ns

ORDERING INFORMATION

Denotes RoHS-compliant product.

* DS9034PC or DS9034PCI (PowerCap) required. Must be ordered separately.

DS1258Y/AB NONVOLATILE SRAM 40-PIN, 740-MIL EXTENDED MODULE

НВ	

PKG	40-PIN				
DIM	MIN	MAX			
A IN.	2.080	2.100			
MM	52.83	53.34			
B IN.	0.715	0.740			
MM	18.16	18.80			
C IN.	0.345	0.365			
MM	8.76	9.27			
D IN.	0.085	0.115			
MM	2.16	2.92			
E IN.	0.015	0.030			
MM	0.38	0.76			
F IN.	0.120	0.160			
MM	3.05	4.06			
G IN.	0.090	0.110			
MM	2.29	2.79			
H IN.	0.590	0.630			
MM	14.99	16.00			
J IN.	0.008	0.012			
MM	0.20	0.30			
K IN.	0.015	0.025			
MM	0.43	0.58			